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The results that I am about to discuss were obtained 

in the course of work on collision rates in electron-positron 
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colliding-beam storage rings. Understanding collision 

rates requires understanding the statistical distribution 

of beam particles. 

Idealizing and simplifying for the sake of clarity, an 

electron circles a storage ring in the horizontal plane at 

the speed of light, with its displacement y perpendicular to 

the plane of the ring executing small oscillations according 

to 

3 ‘;I- + X(t)’ W-J, tl- f(‘f’ f(f), (11 

where ‘d 
\ m0duIateJ. 

' 71 
and F are in t (the period is 

the time needed to circle the ring once), and f is Gaussian 

uncorrelated white noise 

< 2 (&I i lf,l) = S(f- t,). (2) 
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Correspondingly, the probability distribution, P, in y and 

y evolves in time according to a Fokker-Planck equation 

2P 2-P 22 + ia 5+ += a: (‘d$P) f ;p$, (3) 

The Lang&in equation (l), or the Fokker-Planck equation 

(3), differs from textbook systems primarily in that the mo- 

dulation period is much smaller, rather than much larger, 

than the naive thermal relaxation time, l/y> (the averaging 

is over external modulation). In my work, I am particularly 

concerned with the limit YJo ,T"O, with F and the modulation 

period fixed. 

For today's talk, I shall ignore 

new results described here, in the present one-dimensional con- 

text, constitute a necessary prerequisite for more realistic 

studies. I will report soon on a more extensive study of mo- 

dulation-related statistical effects (and enlarge on the to- 

pics treated in the present talk) in a forthcoming series of 

publications., 

The analysis I describe today concerns the "semiclassical" 

(small - y ) approximation to thesolution of (3) corres- 

ponding to the probability that a Lang&in particle, initially 

at y=y and y=v , ends up at y and v at time t: 
1 1 2 2 

PCya,Y; 3% 1, " .tj=" ,e~,~+\o~r (r~+d'llu.~~)~~~‘i~,~,aii(4) 
I 
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where N is a normalization constant. (This is most easily 
2 

derived from path integral considerations. ) I have replaced 

the force F by minus the derivative of a (confining and sym- 

metric, for definiteness) potential U. The path ~('7") extre- 

mizes the exponent, subject to the boundary conditions indi- 

cated in the parentheses on the left-hand side. The extremal 

('Onsager-Machlup") equation is 

(J= [j$ - 1(& + Lq,l[j + “‘a + u’(y)]. (5) 

I am concerned with solutions of (5) and (4) for small 

d but for large time (t>o(&), because in storage rings, 

'/(U, = milliseconds, much shorter than the time scale (mi- 

nutes, hours) on which elementary-particle experiments are 

performed. 

In order to solve (5) approximately for small 8 , I 

assume that at any time, y is close to a solution of fric- 

tionless, noiseless Mewton's law, y+U'(y)=O, up to a deviation 

that vanishes as )I+0 (tx fixed). I then proceed as fol- 

lows: 

I take the interval (0,t) and break it into subinter- 

vals - a subinterval (except for the first and last) begins 

and ends at two succesive times when y crosses zero (where 

U'=O) . Eardly any damping or fluctuation takes place in one 

such subinterval. The deviation of y in such a subinterval 

from Newtonian vibration depends on ‘d , and also on the 

way initial acceleration deviates from -U'(O)=O, and also 
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. . . 
on how the initial y differs from the Newtonian value -U"(O)$. 

I compute the solution y to (5) in a subinterval by per- 

turbing about a solution to undamped Newtonian motion in powers 

of V , and of a (acceleration (times sign of initial velo- 

city)at beginning of subinterval), and of p (value of'$+u"$ 

(times sign of initial velocity) at beginning of subinterval). 

From this computation I derive an approximate map, which 

transforms the values of a, p, and speed v at the beginning 

of one subinterval into their values at the beginning of the 

next. 

This one-subinterval map is to be iterated many (>&j/r)) 

times. My main result is that such long-time iteration can 

be done in a simple closed form, up to small remainders. 

A technical note: It is necessary to assign formal orders 

in y to the variables a and p in order to make the pertur- 

bative calculation systematic. I take my cue from two par- 

ticular solutions to (~5), 

3 
t “2 + U”$ =o 

(6) 

(damped and antidamped Newtonian motion). VJhen y=O, (6) gives 

a=+xv, and p= XbzV. So in the general case I take v=O(l), 

a=O(X 1, and p=O(~x'). 

Then the perturbative subinterval map is 

nv = 0. ($2) + 0(xX), (7a) 
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A& = ‘2 e - &(&) + f’$(r) 
V + o(\d”) 

, 

” p = \d2G ($ , 4’T 
+ i&A b c&3 + S (t$S (7b) 

where J is pi times the canonical action integral for undamped 

Newtonian motion at energy v2/2 (Js kb e2dl- ). Such an undamped 

Newtonian oscillation completes itself in time (Z/v)dJ/dv. 

For small Y , we may, because of (71, consider A v, A a, 

Ap as differentials rather than finite differences. Then 

(7) is a system of three first-order ODE's. This system turns 

out to have two conserved quantities 

E f -V’x’ - 0’ + 2pV, 

H ; [ 5 5 - .$XJ + aa ($1. 

The former, E, is the restriction to y=O of 

E= L-j%- 

(81 

(9) 

which is actually conserved exactly by (5), as a consequence 

of our present neglect of any explicit time-dependence of 

parameters. The latter, H, is a kind of adiabatic invariant, 

Q= $ \ [L- LJ $ - ‘B $ + 5 2F? 3 33 
’ CQ (’ %)]&. (10) 

When the right-hand sides of (7) are written in terms of H, 

the equations for Av and A a take a canonical Hamiltonian 

form 
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a”r 3k(V,Q, E) 
act + O(YZ) d 

Aa= - 
3+-i (V,Q, El 

T3V + otzi”). 
(11) 

Because of these conservation laws, the system (7) can 

be solved (approximately) by quadrature. The end result is 

this: In terms of E and H, the probability in equation (4) 

(restricted, for simplicity, to yl=y2=o) is 

P(O,V,; o,v,; z&)2 

1 
‘“A [?H - 5 g 4. ay?T] 

flJ exr + k(v:-v.‘) + ,“,, CJ(aH- 5%; +t23)p 1 v \cQvl +0(x+ 
j 12) 

The path of integration proceeds fromlvl( down to a turning 

point, and then up to\v21. To determine E and H, one extre- 

mizes the exponent in (12) (with v1 and v2 fixed) subject 

to the constraint 

Ict = b t ($$g + cm)) 
IVLl IL-h/I (cPr/Qv) 

= 
‘d i \“,I 

[I(1 b.1 _ $g +x2J)]& + o(x). (131 

Here is a check: As jt-103 , it turns out that both E 

and H approach zero. Then the probability (12) becomes 

-2‘d 
( > 

4 N 9xp yi y, (14) 

i.e. Maxwell-Boltsmann, as it should. Incidentally, E=H=O 



means that v, a, and p correspond to the restriction of solu- 

tions of equations (6) to y=O. This is to be',interpreted ~,.a~ 

follows: When f+oO , the extremal path proceeds from (yl,vl) 

to (0,O) according to damped Newtonian motion, and then pro- 

ceeds from (0,O) to (y2,v2) according to antidamped Newto-,' 

nian motion. 

Note that the harmonic oscillator is singular as far as 

this formalism is concerned. When U is quadratic in y, (12) 

and (13) depend on the same one linear combination of E and 

H, so that the constants cannot be determined independently. 

In this case, the formalism must be modified in a well-defined 

way. V7ith the appropriate modifications, one can reproduce 

the exact3 harmonic oscillator Fokker-Planck Green's function 

(to within O( 1' ) in the exponent). 
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